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This paper is divided into three sections. In the first section we discuss Cayley graphs
and show how they may be used as a tool for the design and analysis of network
architectures for parallel computers. In the second section we present our research on the
routing problem. This research can be regarded as a first attempt to find general purpose
routing algorithms for interconnection networks. In the last section we consider the problem
ofconstructing Cayley graphs that meet specific design parameters.

INTRODUCTION

One of the most important problems facing technology today is the development of
scientific supercomputers. Computer science experts believe that future supercomputers
will be based on large-scale parallel processing. Such a computer will have a system
consisting of many processors and memories. These machines are commonly known as
SIMD (single instruction stream - multiple data stream) and MIMD (multiple instruction
stream - multiple data stream) machines. The Connection Machine and the Goodyear
MPP are examples of the former. while the NcuBEfren and the BBN Butterfly represent the
latter class ofcomputer. An essential component of such computers is the interconnection
network providing communication among the processors and memories ofthe system.

The advent of very large scale integration (VLSI) makes it possible to put more
processors. which are faster and have more memory. on a single chip. Thus. the
interconnection networks of future multiprocessor computing systems may be very
complex. Indeed. we are seeing this trend today. The Connection Machine developed by
Thinking Machines Inc.• consists of216 single-bit processors all working in parallel!

Interconnection networks are often modeled by graphs. The vertices of the graph
correspond to processing elements. memory modules. or just switches. The edges
correspond to communication lines. If communication is one-way. the graph is directed;
otherwise. the graph is undirected. We point out that a model for the Connection Machine
is the 12-dimensional binary h~ercube.namely Z212. The rationale for 212 vertices vs 216

vertices is that there are 21 chips, each chip having 16 processors. Thus, from a
communication viewpoint. there are 212 elements.

Here is an incomplete list of graph properties that a gOod model might possess: simple
and efficient routing algorithms. small diameter, high connectivity. and small degree.
Also. one would wish the interconnection network to be as efficient as possible. Ideally one
wants each processor to send a message and each memory module to receive a message
with each "clock tick." One approach to this problem is to design networks with lots of
switching nodes connected in such a way as to ensure multiple memory-processor paths.
There is also the "lay-out problem." that is the problem of embedding the graph in a 2 or 3
dimensional Euclidean space in a manner that can be realized in hardware. Additionally.
it is desirable that the longest wire link be as short as possible since timing problems arise
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otherwise. Finding graphs that satisfy these conditions can be a formidable task; in fact,
the properties of high connectivity and small degree seem to be inversely proportional to
each other. Consequently, in a particular application, trade-offs must be made.

Vertex symmetric graphs are especially well suited as models for interconnection
networks because these graphs have the property that the graph viewed from any vertex
looks the same. Thus, in such networks the same routing algorithm may be used at each
processor. Moreover, the symmetry of the graph minimizes congestion, as traffic is
distributed uniformly over all vertices. (Note that a random graph would satisfy the
second property but not the first.)

At the 1986 SIAM international conference on parallel processing, Sheldon Akers and
BalaKrishnan Krishnamurthy suggested using the theory of groups as a tool to construct
"good" vertex symmetric interconnection networks. Their main theme was that finite
groups provide a rich source ofinterconnection networks and that group structure provides
an algebraic approach to the design problem. Since that time, there has been an explosion
of activity directed towards applying group theory to the design of network architectures
for supercomputers.

This paper consists of three sections. In the first section we introduce the notation and
terminology and provide an exposition of this exciting new field. In the second section we
present our research on the routing problem. Routing is the problem of communicating
efficiently among the processors and memories. Usually a routing algorithm is network
dependent, that is, given a network, one must find a routing algorithm for that specific
network. We present in this paper a routing algorithm for any computer architecture
satisfying certain properties. Moreover, we demonstrate that our algorithm is extremely
efficient in many cases. In the third section we consider the problem of constructing
Cayley graphs that meet specific design parameters. In particular, we present research
done in support of an effort to study the influence of these parameters on network
performance.

1. MATHEMATICAL STRUCTURES FOR COMPUTER NETWORKS

In this section we discuss Cayley graphs and indicate why they may be good models of
network architectures for supercomputers. We shall also present an overview of the work
ofSheldon B. Akers and BalaKrishnan Krishnamurthy. We assume the reader is familiar
with the basic definitions, concepts, and results of graph theory and group theory as found
in [5] and [7].

Let G be a group and let A be a generating set for G which is closed under inverses.
The Cayley graph r= f{O, A) is the graph whose vertex set and edge set are

V=G, E = {fg, h} Ihg -1 E A}.

We record some basic facts about Cayley graphs.

Proposition 1.1. Let Abe a ~et of generators for a group G. The Cayley graph r{G, A) has
the following properties:

(i) r(G, A) is a connected regular graph ofdegree equal to the cardinality ofA;
(ti) r{G, A) is a vertex symmetric graph.
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Proof. (i) This follows directly from the definition ofa Cayley graph.

(ii) We need to show that the automorphism group of the graph rCG, A) acts
transitively on the vertex set G. For gEG, let ~g be the element ofSG defined
by ~g=hg 'dhEG. If {h, k}EE, then since (k~g) (h~g)-l=kgg-lh-lEA, we
have {~g, k41g}EG. Thus the elements 4lg are permutations of the vertex set
G which also preserve the incidence relation of the graph rCG, A), hence are
automorphisms of r. Transitivity follows now by noting that for any two
elements g, hEG, g~g-lh= h.

Cayley graphs are actually labeled graphs. The edges are labeled by the elements of A.
An edge fg, h} is labeled by an x E A with an arrow pointing in the direction of h, i.e.,

g r.----I~..a:"---_.h

ifand only ifhg-l = a:.
The Alternating group A4 provides an example to which we refer throughout the

paper. The permutations
a=(l, 2) (3, 4), and

b=(1, 2, 3)

generate A4. Let Abe the set {a, b, b- l }. Figure 1 is a picture ofthe Cayley graph r(A4,A).

....=._~,...- __~b2ab

Fig.t. Cayley graph r<A",A)
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Notice that this symmetric graph has degree 3. This corresponds to the number of
distinct generators, namely a, b, and b- 1. Moreover, one can think of the generators as
"direction signs". Suppose, for example, one is at the vertex labeled b2• You may traverse
in the direction b to the vertex labeled 1, or you may move in the a direction to the vertex
labeled ab2, or you may move in the direction b-1 to the vertex labeled b.

Since a=a- 1, we have adopted the convention of not assigning an "arrow" to the edge
labeled by a. In general, a generator will not be its own inverse as is the case with b. So an
ed~e with an arrow has two labels; it is labeled b in the direction of the arrow and labeled
b- in the opposite direction ofthe arrow. We suppress the b-1 labeling by convention.

We note the fonowing about symmetric graphs. The converse of Proposition 1.1 is
false. That is, not all symmetric graphs are Cayley graphs. The simplest counter-example
is Petersen's graph below. We leave the proof of our assertion to the interested reader.
The Petersen graph is not a planar graph, that is where two edges meet is not necessarily a
vertex. We have indicated the vertices by dots.

Petersen's Graph

1.1. The Cayley Graph Model

We mentioned in the introduction that vertex symmetric graphs make "good"
interconnection networks. Indeed, most of the computers in service today that are based
upon large-scale parallel processing have interconnection networks that are vertex

, symmetric graphs. For example, the Connection Machine has a network architecture that
!can be modeled by the 12-dimensional binary hypercube. The 256 X 256 torus-connected 2
dimensional mesh is the architecture of the MPP at the NASA/Goddard Space Flight
'Center. Finally, the butterfly network and the cube-connected cycle network are also
'vertex symmetric graphs that are widely accepted as models for network architectures.
Our basic working hypothesis is that network architectures should be vertex
symmetric graphs. The central problem then is to find new symmetric graphs that
provide superior performance as computer architectures.

In the previous section we learned how to construct vertex symmetric graphs from
groups. That is, if 1:& is a generating set for a group G, then by Proposition 1.1, the Cayley
graph f(G, 1:&) is a vertex symmetric graph. Thus, finite groups provide an infinite source
of vertex symmetric graphs. In addition, graph theoretic properties are reflected in the
algebraic structure of the group and vice versa. Over the past 100 years mathematicians
have developed powerful tools with which to study the internal structure of finite groups.
Consequently, this vast theory can be used to investigate graph theoretic properties of
interconnection networks based upon Cayley graphs.
. This important observation was made by Sheldon Akers and BalaKrishnan

Krishnamurthy in [1]. Using this group theoretic approach, they found two new families
ofvertex symmetric graphs that they called star graphs and pancake graphs [1]. They also
showed that these new interconnection networks in many ways were superior to the n
dimensional binary hypercube and the cube-connected cycle networks.
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The star and pancake graphs are Cayley graphs. The vertex set ofboth of these graphs
is the symmetric group on a, where O={l. 2. 3•...• n}. So all that remains is to
define the associated generating sets. To that purpose we need some more definitions. A
permutation on n is called a transposition provided it interchanges two points and fixes all
others. For example, the permutation (3. 4) is a transposition. There is a nice way of
representing a set of transpositions pictorially. Namely. we associate with any set of
transpositions fJa a unique graph called the transposition graph. The vertices of the graph
are labeled with the symbols {I. 2, 3•...• n}. The edge set. E. is defined by ij E E if
and only if the transposition (i.}) E fJa. For example. the figure below represents the set of
transpositions {(I. 3). (2, 3). (3. 4)}= fJa.

"

3

1 2

We warn the reader that the above graph is not the Cayley graph determined by fJa. but
just a way ofpictorially representing the set fJa. The Cayley graph determined by fJa in our
example has 24 vertices and is ofdegree 3.

The transposition graphs that determine the generating set for the star and pancake
graphs are

*
n 2

• 1
6 3

5 "
Transposition graph for the star graph

• • • • • •
123

Transposition graph for the pancake graph

•

S. Akers and B. Krishnamurthy found these networks to be superior to the binary n
cube when measured by their degree. diameter, and connectivity. In fact. they found that
star graphs not only possess maximum connectivity but provide minimal degradation of
performance in the presence of (a tolerable number of) faults. For a detailed discussion of
this see "The Fault Tolerance of Star Graphs" [2). Table I (reproduced directly from [1])
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shows that star graphs, when measured solely by degree and diameter, are superior to the
binary n-cube.

Table 1. A Comparison

The binary hypercube The star graph

Size Degree Diameter Size Degree Diameter
n n

2n n n n n-l L(312)(n-l)J

7 128 7 7 5 120 4 6

8 256 8 8 6 720 5 7

9 512 9 9 6 720 5 7

10 1024 10 10 7 5040 6 9

11 2048 11 11 7 5040 6 9

12 4096 12 12 7 5040 6 9

One obvious drawback of both star and pancake graphs, since their vertex set has
cardinality n!, is that they are extremely sparse. In fact, there are only nine of each type
within a range ofthree million vertices!

We end this section with a discussion of two design issues that suggest "good"
interconnection networks should be large graphs ohmall degree and small diameter.

The first design issue is to design a network with transmission delays as small as
possible. Since the maximum number of links used to transmit any single message is the
diameter of the graph, one would think one should make the diameter of the graph as
small as possible. .

A general rule of thumb for the total cost of a supercomputer is that two thirds of the
total cost is due to the processor and memory modules and one third of the cost is the
network itself. It is estimated that as much as one third of the network cost is related to
the total number of wires; this cost includes the expense of driving messages at very high
rates through the wires. Let r be an interconnection network with n vertices and e edges.
Ifr is a vertex symmetric graph ofdegree d. one easily computes that

nd
e- - 2 .

Thus, decreasing the degree ofa vertex symmetric graph decreases the total number of
wires used to connect the processors, effectively decreasing the total cost. We also mention
that it appears that the lay-out problem is easier to solve for low degree networks.

We now present some evidence that Cayley graphs of nonabelian groups and in
particular, Cayley graphs Qf the nonabelian simple groups, may provide the best
interconnection networks, at least in the sense of producing graphs of small degree and
diameter.
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Our first piece ofevidence is a result ofP. McKenzie; see [9] for details.

Proposition 1.2. Let G be a permutation group on a set g ofcardinality n. Suppose a is a
set ofpermutations that generate G1. all of which move at most k points. Then the diameter
of rCG, .6.) is bounded above by 2Ckn)llk.

L. Babai, W.M. Kantor, and A. Lubotzky, [4], have a result that suggests that the
simple groups may be a rich source of large Cayley graphs of small degree and diameter.
They prove:

Proposition 1.3. Every nonabelian finite simple group has a set.6. of s7 generators such
that the resulting Cayley graph has diameter on the order oflog2lG1.

This suggests the following conjecture that may be found in [3].

Conjecture. There exists a constant c such that for every nonabelian finite simple group
G, the diameter of every Cayley graph of G is bounded above by a number that is on the
order of (log21G1)c.

The binary n-cube has size 2" and diameter log2 (2") = n, but its degree is n. The above
theorems suggest that the finite simple groups should produce Cayley graphs comparable
with the n-cube but ofvery small degree. In fact, if the conjecture is true, one would expect
to find Cayley graphs of these groups with much smaller degree and diameter than the
corresponding n-cube ofthe same size.

2. THE ROUTING PROBLEM

Routing is the problem of communicating efficiently among the processors and
memories of an interconnection network. Graph theoretically this problem is equivalent
to finding paths between pairs ofvertices.

The task of finding paths from one vertex to another in a graph has been extensively
studied and there exist many algorithms for this purpose. Dijkstra's algorithm, for
example, finds the shortest paths between any pair ofvertices. This algorithm can be used
in any graph (directed or undirected). The problem with all of these algorithms is that
they require an excessive amount of overhead. That is, too much of the computer's
resources must be allocated to routing. .

The solution at the moment is to design routing algorithms for each specific network.
These special purpose algorithms usually only apply to the interconnection network they
were intended for. For example, the routing algorithm used in the Connection Machine
depends totally on the geometry of the 12-dimensional binary n-cube and is completely
different from the routing algorithm used in the MPP.

The main purpose of this section is to present our own research on this problem. Our
research can be regarded as a first attempt to find general purpose routing
algorithms for interconnection networks. Specifically, we present a routing algorithm
for any Cayley graph of a permutation group satisfying certain properties. Moreover, we
will demonstrate that our algorithm in many cases is extremely efficient. In addition, we
shall present some promising new interconnection topologies.

All of the groups we study in this section will be permutation groups. In light of
Cayley's theorem we have lost no generality.
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In this section we establish the fact that routing in a Cayley graph is equivalent to a
special type offactoring in the underlying group.

We first look at an example. Consider the Cayley graph of the permutation group A4.
in figure 2. Suppose one wishes to send a message from the vertex labeled 1 to the vertex
labeled bab. There are many different paths that lead from 1 to bab. In figure 2 we have
indicated three paths from 1 to bab. From the defmition of a Cayley graph and the fact
that the vertex labeled 1 is the identity, the path 1 yields ab-1a=bab, path 2 yields the
obvious factorization of bab, namely bab itself, and path 3 yields b-labab -1 = bab. Thus,
we have three different factorizations of the element bab. The point is that any path from
1 to bab produces a factorization of babas a product ofelements of the set A={a, b, b- 1 }.

~----------------------------~\ path 1 4
\ I
\ I

\ '\ I

\ '\ I

\ '~ ,
~ .......... ,..... ,,;tI.......::.. --9

.............L _~~t~ ~__ .../I........

Fig. 2. Cayley grapb of tbe permutation group A..

The converse of this is also true. Namely, any factorization of bab as a "word" in the
generators {a, b, b-1 } produces a path from 1 to bab. We record and prove this easy but
important fact about Cayley graphs.

Proposition 2.1. Factoring elements in G as "words" in the generators is equivalent to
routing in the Cayley graph reG, A) .

Proof. First suppose we possess an algorithm A that can produce a path between any pair
of vertices in our Cayley graph reG, .:1). Also suppose thatg is an arbitrary element ofG.
Apply algorithm A to produce a path from the identity vertex 1 to the vertex labeled g.
Suppose this path is 1, 81' 82S1' ••• , (8 t •.. s281)' By the definition of a Cayley
graph it follows that g is the product 8i .. 8281, and thus we have factored g as a
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"word" in the generating set {a, b, b-1 }. Next assume we have a factoring algorithm F
that can express any element 8 of G as a product of elements a, b, and b -1. Let % and y be
two vertices of the Cayley graph r(G, 6.} and set g=y%- 1. Now apply the factoring
algorithm F to produce St ••• 8281 =8· Clearly %, SI%' (s2s 1)x, ... ,(St' •• s2s1)
%= y is a path from % to y.

The problem of factoring in the context of permutation groups has been studied
extensively. In fact, if the generating permutations satisfy certain properties then an
extremely efficient factoring algorithm does exist. This is the topic ofthe next section.

2.2. Factoring in Permutation Groups

Let 0 be a finite set. Recall that G is said to be a permutation group ifG is a subgroup
of So (the symmetric group on 0). Since G can be very large even when 0 is relatively
small, group theorists often describe permutation groups by defining them as the group
generated by a set of permutations. In general, for an arbitrary generating set 6. of G, it
can be very difficult and computationally prohibitive to determine the order of G or to test
an arbitrary permutation for membership in G as well as factoring such a permutation as a
word in the generating set 6... This caused Charles Sims to introduce the fundamental
concepts ofbase and strong generating set [14).

A base for a group G ~ So is defined to be an ordered subset B ~ 0 with bg= b,
'fJbEB~g=e, the identity permutation. Heuristically, a base is a large enough subset of 0
that any permutation of G is completely determined by its action on the base. A set of
generators 6. of G is said to be a set of strong generators with respect to B = {al'a2• •• ,

~} provided 6. contains a set of generators for the stabilizing sequence of subgroups Gal'
lia1a2, .•. , Gal ... at' Here Gal ... ali is the subgroup {g E G I aig= ai' 1 S i
S k}.

We remark that our generic example of a Cayley graph (figure 1) provides us a first
example. Here the generating set A= {a, b, b -1 } is a set of strong generators with respect
to the base B={4, I}. To see this, one checks that G4, equals the subgroup generated by b,
and G4. 1 is the identity subgroup. Thus A contains a set of generators for the stabilizing
sequence G4,' G4,I' It is also immediate that the only permutation of A4, that fixes both 1
and 4 is the idenlity.

Given a base and strong generating set relative to this base, the above questions are
easy to answer. In particular, if the base is small relative to n the Sims algorithm is
extremely efficient. In the next section we will present a brief description of this
algorithm.

2.3. The Sims Factoring Algorithm

Let G be a permutation group with strong generators A and base B as defined in
section 2.2. Also set Gi to be the stabilizer subgroup Ga1a2 ... a i _ 1,where G1 is
understood to be G.

Proposition 2.2. Let U i be a complete set of coset representatives of Gi+ 1 in G~. Then
every element ofG has a unique representation ofthe form U"U" _ 1 ... Ul' Ui E lP.

Proof. We proceed by induction on the cardinality, b, of the base B. If B={a1}, then
a1g=a1 implies that g is the identity so Ut =G and there is nothing to show, as g=g is a
factorization. So suppose b > 1 and a1S=%j E n. Since G is transitive on the orbit that
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contains a l and UI is a complete set of coset representatives of Gal in G, there is a unique
coset representative uI "EUl witha1u1.=x .. Set g2=gu1j-I, fj.2=fj. n G2 andB2 =B-{a1}.
It is immediate from ute definitions thit d2 is strongly generated with base B2 and strong
generating set b.2• Since g2 E G2 and B2 have cardinality b-1, g2 has a unique
representation o~the form UbC!b _ I ..• U2 by induction. The resu~t is now immediate.

Since b. n G1 generates G1
, any c~set representative Ui E U1 can be represented as a

"word" in the strong generators b. n G1
• The Sims algorithm factors each group element as

a unique product of coset representatives. But these coset representatives, ui, are chosen
such that they have minimal length as words in the strong generators. This forces the
Sims coset representatives to satisfy the right Schreier property. That is, ifX1 E Ui then xE
Ui (for a discussion of this see [8]).

We now define a family oflabeled graphs, f i , 1 siS: b, analogous to the transpo~ition

graphs of section 1. These graphs will be helpful in understanding the Sims cosets UI. For
each base point a·, define fi to be the graph whose vertex set V. is the set {a.11 E °I for

. J " I P
somegE G' }. SetEi =0, U1= 0,P=identity subgroup and V*={ai }. Wedefine the edge
set E i inductively as follows:

Step i: Ifv* = Vi stop

For each x Eb. n Gi and each w EP set z = wx,

Ifaiz f v* setEi=Ei U {aiw, aiwx},

SetP=P-{w} U {wx}, and set ui = Ui U {wx}

End;

Set i=i+1

Go to step i.

Since Gi acts transitively on the vertex set V. and b. n Gi generates Gi, the algorithm
I .

terminates with a connected tree fi' The Sims coset representatives are the set~ U' ,
1sis b. The reader will observe that there is a one to one correspondence between UI and
the set of all paths in f i beginning with the base point at" This observation allows the
cosets to be stored in a very efficient way. To that purpose, define Fi to be an l.al-Iong
vector; set the ith component of Fi to be zeJ,"o and if x. f Vi set the jth coordinate ~ be
negative 1. Next suppose that xj EVi and uij is the uni~ue coset representative in UI that
maps ai to xi' and suppose further that ujj = wSll where sll is the kth strong generator, then
assign the jth com~nent of Fi to be ft. The reader will observe that all the coset
representatives of U' can be recovered from Fi" These vectors are called Schreier vectors.
Thus we see the storage requirement for the Sims algorithm is minimal. It must store the
strong generators as permutations on 0. It also must store the Schreier vectors. The
number of these vectors is exactly the cardinality of the base B. Thus the memory
requirement is (1b.1 +IBI) integer arrays of dimension 101. An easy calculation shows that
the number of lookups needed to factor any permutation in G as a product of strong
generators is bounded by

I I
1 + \81 (101 + 1)°( 2 ).

Thus the number oflookups is on the order orlol3.
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. Given a permutation g E 0 it is a unique product of the form UbUb _ 1 ••• Up U. E
U'. Each U i corresponds to a path in rio This path is the Sims factorization of U i as a wJrd
in the strong generators. The algorithm first examines the image a1g of the first base
point a1 under g. Since this determines a unique path in r 1 from a1 to a1g, U1 is this fath.
The factorization of U1 is obtained via the Schreier vector F I' Now observe gU1 - EG2

which is strongly generated bll1. n 0 2. Thus we proceed inductively to recover U2 as a
word in the generators Ii. n G . We continue in this way to recover each of the U. in the
factorization ofg. I

Suppose Gis a permutation group on 0 with IGI =N, where N is much larger than 101.
Suppose further that G has a set of strong generators Ii. with respect to some base B. Then
by Proposition 2.1 the Sims factoring algorithm provides an excellent routing
algorithm for the Cayley graph r(G, 4.). Moreover, we envision each node in the
graph to have its own identical algorithm. Thus no global information is needed to
route.

We will illustrate the Sims algorithm with our cannonical example, A4.' Recall in
section 2.2 that A 4 has a strong generating set Ii.={ a, b, b- 1 } with respect to the base
B={ 4,l} where a=(1, 2)(3, 4), b=(1, 2, 3) and b-1 =(1,3,2). The trees r 1 and r 2 and the
Schreier vectors F1 and F2 associated with the base points 4 and 1 appear in figures 3 and
4.

34 __;;;;.4_-.

1

'1 = (2,3,1,0)

Fig. 3. Schrier vector with base point 4

2

1

3

'2 =(0,2,3-1)

Fig.4. Schrier vector with base point 1

To illustrate this algorithm we factor the permutation g= (1,3,4) EA4. First note that
g moves the base point 4 to the point 1. So we look up position 1 in the Schreier vector F 1 to
rmd generator number 2 which is b. Now we compute the image of4 under gb -1 = (1, 2) (3
4). Since this is 3, we look at position 3 ofF1 which is generator 1. Next we see that gb- l
a -1 rlXes the base points 4 and 1. Because {4, 1 }is a base, gb-la -1 is the identity and we
have obtained the factorization, namely g= abo
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2.4. Strongly Generated Cayley Graphs

In this section we shall provide some examples of Cayley graphs whose generators are
a set of strong generators for the underlying group. We call such a graph a strongly
generated Cayley graph. We remark that by the previous section such graphs have a
built-in routing algorithm. But first we obtain an upper bound for the diameter of any
Cayley graph that can be given by our representation. Let r<G, 6) be a Cayley graph with
G a subgroup ofSQ'

Suppose lal = n, 161 = m and l:J. is a set of strong generators .for G with respect to some
base B with cardinality b. ~lso let B={al' a2, ••• , t;,}, G'=G4142 ... ai_I' and ni
be the cardinality of the set U'. Then we have

Proposition 2.1. The diameter ofr(G, l:J.) is bounded by

b

L (n i -1).
i = I

Proof. Any g E G can be written as a unique product U Ub _ l '" U1' where U. is a
coset representative ofGi +1 in Gj:,; It suffices to show that ~ is the product ofat most'(n~
1) members of 6. Now each u E u' has a minimal representation as the product of say llu)
members of 6nGi. So we define the length of u to be leu) and set L=max {leu) I uEUi}.
Next pick u* E Ui with the length of u* equal L. Then by the right Schreier property, ut
must have at least L coset representatives of length at least one. Consequently, Ui must
have cardinality at least L +1. Since the cardinality of ut is ni, the theorem follows.

We introduce a new definition. We define the algorithmic diameter of any Cayley
graph reG, l:J.) that can be represented by our methods to be the length of the longest
factorization given by the Sims algorithm. We remark that our definition may be base
dependent.

Example 2.1. The Star graph

In section 1.1 we found that the star graph networks discovered by Sheldon Akers and
BalaKrishnan Krishnamurthy had many desirable properties as models for
interconnection networks. The reader can check from the transposition graph defining the
generating set for the star graph in section 1.1 that 6={ (1, 2), (1, 3), (1, 4), .. " (l,n) }
is the generating set for the underlying group. If one lets B={2, 3, 4,. . " n} it is easy
to check that l:J. is a set of strong generators. Thus the star graph is a strongly generated
Cayley graph and consequently our algorithm may be used to route in this family of
networks. The authors in [1] calculate the diameter ofthis family to be

It would be ofinterest to compare this with the algorithmic diameter.

Proposition 2.2. The algorithmic diameter of the star graph is bounded above by 2n-3.

Proof. Let G be the u:nderlying group ofthe star graph on n points. Define Gi=G2 3,
... , i, i~2, (that is.G' is the point stabilizer of the points 2 through i) a~d set Gl to ~ G
itself. Also let U' denote the Sims coset representatives of G' in G

,
- 1. Since G' is

isomorphic to the symmetric group on n- i+ 1 letters, itfollows that ut consists ofn-i+2
cosets. The permutation (1, i) (1, t), t~(i+ 1) maps the p'oint i to the point t. Thus these n
i permutations are distinct coset representatives of U' and have length at most 2. Since

'.
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the permutation (1, i) and the identity are both members of cP, it follows that all members
of cP have length at most 2. In the case when i= n there is exactly one coset representative
namely (I, n). So the algorithmic bound is

(

n-2 )
S ,I 2 +1 = 2n-3.

1=1

Example 2.2. The Pancake graphs

The pancake graphs dermed in section 1 are strongly generated Cayley graphs. We
leave it as an exercise to the reader to check that the set { (1, 2), (2, 3), (3, 4), .. " (n-l,
n)} is a set ofstrong generators with respect to the base {I, 2, 3, .. " n-l}.

Example 2.3. The Mathieu group Mil

The sporadic simple group Mil of order 7920 has a permutation representation of
degree 12. It can be shown that the set ~={al' a2, •• " as} (see table 3 for a dermition
of these permutations) is a set of strong generators for this group on the base {I, 2, 3, 4}.
Also see table 2 for a list of the four Schreier vectors. A calculation shows that the Cayley
graph r(Mll, ~) has diameter 7, average diameter 5.25, algorithmic diameter 12, and
average algorithmic diameter 7.2. Thus this graph of size 7920 has degree 8 and diameter
7. This compares very well with the corresponding hypercube of the same degree that has
diameter 8, and 256 vertices!

We next demonstrate our routing algorithm. A computation shows that the
permutations %=(1,12,11)(2,7,3,6,4,5)(9,10) andy=(2, 8,11,4,12,5,7,9,3,10.6) are
elements of Mll , We desire to calculate a path from %toy. From Proposition 2.1, we see
that we need only factor y% -1 = (I, 11, 6, 5, 2, 8, 12, 4)(3, 9, 7, 10) as a word in the strong
generators. Note that this permutation moves the first base point 1 to 11. As in our
example, we look at position 11 in F.l~hich is generator 2. Thus we proceed from % in the
"direction" of a2 to the vertex a 2%' We now need to calculate a path from ar: to y. But this
is equivalent to factoring yx- 1a2 -1. We proceed inductively. The algorithm
terminates when we have to factor the identity element. At this point, we have factored
yx -1 and have generated a path from %to y.

Table 2. The Behreier vectors for M11

F1=(O,3,I,S,S,S,5, 7,6, 7,2,4)

F2 =( -I, 0, 6, 7, 3,1, 4, 5, 4, 7, 7, 7)

'3=(-1, -1,0,4, 7,6,4,S,S,6, 7,S)

'4=(-1, -I, -1,0,7,7, -I,S, -I, -1,7,8)

The reader will note that in our example the algorithm uniquely factored yx- 1 as a
product of the generators, thus producing a unique path from x to y. This is always the
case. In fact, given any group element %, routing from %defines a spanning tree rooted at x.
The spanning tree rooted at the identity for our cannonical example A4 appears in figure 5.

47 UNCLASSIFIED



DOCID: 3929129

UNCLASSIFIED CRYPTOLOGIC QUARTERLY

Table 3. Strong generators for M11

a
l
=(2, 6)(3, 5}(4, 7)(9,10)

02 =(1,11){3, 5)(2, 7)(4, 6)

as =(2,5)(3,6)(4,7)(11,12)

a... =(3,4)(7,6)(8,9)(11,12)

a" =(2, 8)(4, 9)(5, 6)(11, 7)

al\=(8, 5)(3,6)(4,10)(11, 9)

a
7
=(8,l1)(4, 6)(10, 7)(5,12)

a
A
=Ul, 5)(12, 6)(4,8)(9,10)

Fig.5. Spanning tree for Ezample A"

2.5. An"Alternate Path" Algorithm

In the previous section we computed a path between two elements of the group Mu '
Recall that at each step we computed which generator should be applied. That is, we
traverse the edge labeled by this generator in the Cayley graph. It may happen that we
will be unable to traverse this edge due to network loading. For this reason, a simple rule
for choosing an alternate next edge, thus an alternate path, is desirable. Our idea is to
modify our algorithm to produce alternate paths.

The present algorithm routes on a spanning tree of the Cayley graph. This spanning
tree is uniquely determined by the given ordered base for which the generators are strong
generators. If there were another base for these generators, then the algorithm
implemented with respect to this base would route on a different spanning tree, hence
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producing alternate paths. Thus our idea is to fmd generators that are strong with respect
to many bases. We could then switch between spanning trees when necessary. Usually
this is not possible. However, ifwe have the luxury oCincreasing the number of generators
(thus increasing the degree of the Cayley graph) it can be accomplished. We illustrate by
referring to A 4 again. Figure 6 is the new Cayley graph obtained by adding the generators
c=(2, 4, 3) and c- 1=(2, 3, 4) to the original generating set for A4. This expanded
generating set is a strong generating set with respect to the ordered base {I, 2}. The
spanning tree determined by this new choice of base and strong generators is shown in
figure 7. Notice that this tree and that of figure 5 have only three edges in common. In
this way we have constructed alternate spanning trees for many strongly generated
Cayley graphs, including the Cayley graph of Mu presented in this paper. The reader
should also observe that the generating sets for the star graphs, respectively the pancake
graphs, (see section I) are strong generators with respect to (n-I)! bases.

The main conclusion of this section is that permutation groups represented by a set of
strong generators produce Cayley graphs with an automatic routing algorithm built in,
namely the Sims factoring algorithm.

Fig.8. New Cayley graph obtained by adding the generators
c = (1,4,3) and c- 1 = (1,3,4) to the original generating set for A..
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Fig. 7. Spannirg tree obtained by adding the generators
c = (1,4,3) and c- = (2,3, 4) to the original generating set for A..

3. DESIGNING "OPTIMAL" NETWORKS

It is believed that the degree of an interconnection network for a large scale, shared
memory high performance MIMD machine must be small. For example, Pittelli and
Smitley of SRC feel that due to limitations in present day technology, it is not possible to
build any of the networks that they have studied if the degree exceeds 6 [11]. Thus in a
search for Cayley graph models we must look for groups that are generated by only a few
elements. Given that the degree of a network is fixed, it is conjectured that the average
diameter is the predominant factor in determining the network performance [11].

Indeed, a recent study by Pittelli and Smitley provides experimental evidence of this
[12, 13]. In this section we discuss our contribution to this study. Specifically we were
asked to design Cayley graphs to be used in their simmulation. To study the innate
performance characteristics of these graphs, it was decided that they would be evaluated
at an artificially high 100% message injection rate, and also every node would be a
processor or a memory module. Due to real world constraints it was decided that the
graphs should have approximately 1024 vertices, be of degree s 6, and have an average
diameter s 7.5. The importance of average diameter in determining network
performance was supported by the fact that the graphs found by us had the smallest
average diameter and out performed all other graphs evaluated in the study. Table 4 lists
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the graphs evaluated in the study except for the degree 10 binary hypercube that has been
included for comparative purposes. The first five graphs are popular parallel processor
networks while the last three are our constructions. We will return to this table
momentarily.

Table 4

Graph Vertices Degree Diameter Avg.
Diameter

Hypercube 1024 10 10 5.0

Toroid 1024 4 32 16.0
(32 X 32)

Toroid 1024 6 16 8.0
(8x8XI6)

Butterfly 1024 4 10 6.6
(128 X8)

Super Toroid 1024 4 12 6.8

SSI PSL(2, 13) 1092 4 9 6.2

SS2 1024 5 8 5.2
Subgp. ofM24

SS3 1024 6 7 4.5
Subgp.ofSl6

The nature of this work was experimental as well as theoretical. We would use group
theoretic insight to construct candidate Cayley graphs with the appropriate size and
degree. We would then calculate the average diameter ofthe graph. The software package
CAYLEY, developed at the University ofSydney, greatly enhanced our ability to examine
many Cayley graphs.

Heuristically speaking, since we want to construct graphs with low average diameter
we require the generators to have as few "short" relations as possible. The general idea is
that ifwe pick an initial point in the Cayley graph f(G, A), applying the generators to this
point will give us deg (I') new vertices in the graph. We repeat the process for each of the
new points found except that now, due to relations of the form aa-1, we can pick up at
most deg (I') -1 new vertices with each application. Whenever application of a generator
branches back to a previously "found" point, it is due to some relation on the generators.
Low average diameter graphs should have very little of this branching back phenomenon
occurring in the early stages of the process. Hence the Cayley graph should look locally
like a tree everywhere. Clearly, abelian groups can not fit this description.

We remind the reader that since our Cayley graphs are undirected, the generating set
A, defining the graph must be closed under inversion. Thus if%E A, %-1 does also. To keep
the degree of the Cayley graphs low, we tried to pick generating sets that consisted
entirely of involutions, Le. generators that were their own inverses (%=.1- 1). This seemed
to be a good idea and in fact we found that of all our constructions, the Cayley graphs with
the lowest average diameters had generating sets satisfying this property.
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At the end of section 1 we presented some evidence (Propositions 1.2 and 1.3) that
suggested that simple groups "may provide the best interconnection networks, at least in
the sense ofsmall degree and diameter." In example 2.3 we saw that the Mathieu group
M 1 with its average diameter of 5.25, is a prime example supporting this suggestion.
W~ile simple groups do seem to have desirable average diameters, the sparse distribution
of the orders of the simple groups makes it unlikely that there will be many of these
suitable for use as realistic interconnection network models. Indeed, P8L(2, 13) is the only
simple group appearing in table 4. To overcome this difficulty we looked elsewhere for
another source of suitable groups. We did not have to look far. Recently O'Brien has
shown that there are 56,092 groups of order 256 (10). The number of groups of order 1024
is unknown but is probably in the millions, thus a plethora of potential Cayley graphs of
the required size awaited our investigation. 8ince abelian groups have nilpotence class I,
our first intuition was to construct graphs from maximal nilpotence class groups; however,
we soon found that we could construct graphs of superior average diameter from groups of
lesser class such as a 8ylow":2 subgroup of the Mathieu group M24 (882). This was also the
case for our other graphs that were constructed from a subgroup of the 8ylow-2 subgroup of
816 (883). We also point out that maximal nilpotence class groups seem to require a large
number of generators, thus increasing the degree ofthe graph.

Average
Round
Trip

Delay
(ticks)
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Fig.8. Performance without queues
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Finally we present (courtesy of Pittelli and Smitley) the experimental results alluded
to earlier~ The reader should consult references [12) and (13) for the specific details of the
assumptions and optimizations underlying their network model. Performance is
measured in terms of average round trip delay (the number of clock ticks for a message to
travel from a processor to a memory module and back) versus average throughput (the
average number of messages entering or leaving the network at any instant of time).
Figure 8 is the performance plot obtained when the switch nodes have no link queues so
that performance is more directly related to the properties of the graph defining the
network. The performance gained by adding link queues can be seen in figure 9. In any
case the reader should note that PSL(2, 13) outperformed the other degree 4 graphs by a
statistically significant margin, as was the case for our degree 5 and 6 graphs also. In fact,
before being driven into saturation, PSL(2, 13) sustained 12.5% more network traffic than
the next best candidate, a butterfly architecture, and 75% better than the bench mark 2-d
mesh.
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Fig.9. Performance with queues
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