
D°C®R~ov~ by NSA on 12-01-2011, Transparency Case# 63853UNCLASSIFIED

The UCSD p-System
STATUTORILY EXEMPT

This paper discusses the UCSD p-System, an operating system for small
computers developed at the University of California at San Diego. The discussion
includes the overall system, file managing, editing, and programming in Pascal on
the system.

INTRODUCTION

The UCSD p-System was developed at the University of California at San
Diego to support Pascal programming on microcomputers. Similar to MS-DOS,
the p-System is an operating system for small computers but is, in many ways,
very different. The p-System is written in Pascal and now supports not only
Pascal, but also FORTRAN, COBOL, BASIC, and Modula-2.

The concept was to have an operating system that, once it was implemented
on a machine, allowed any program written under that operating system to be
truly transportable from computer to computer. That is to say, the p-System
compiler would not actually translate the program into a language that was
specific for, say, an 8088 chip on the IBM-PC, but rather would translate it into a
"pseudo" language that, when used with an operating system designed for the PC,
would run correctly. Similarly, if the operating system were implemented on a
Digital Equipment Corporation (DEC) computer, this same pseudo code would
still work properly with no modifications.

The particular version ofUCSD p-System tested was written for the IBM-PC
and requires two single-sided double-density disk drives and at least 128K of
memory.

OPERATION

Startup

A user's first introduction to the p-System could possibly be described as
overwhelming. It comes in a good-sized box containing five books and six disks.
What are you going to do with six disks, you say? You've only got two disk drives!
Read on, things aren't so bad.

The books themselves come in the typical IBM format, roughly 8 X9t inches
in the usual grey slipjackets. Furthermore, they are very readable. To give the
reader more encouragement after the initial shock of seeing five books and six
disks, it is only necessary to read half of one of the books to become a useful
programmer and only two disks are really necessary (see, aren't you glad you read
on?). The various disks are used depending on what sort of accuracy you are

129 UNCLASSIFIED

DOCID: 39:iji@JiiIFIED CRYPTOLOGIC QUARTERLY

striving for in your numerical calculations. UCSD Pascal will support up to
4-byte accuracy.

Probably the most important manual to read is the Beginners Guide for the
UCSD p-System. It will advise you to put the Startup disk in the left drive and the
Pascal disk in the right. The names are printed on the disk jackets. You then
bring up the system in the usual manner (ALT-CTRL-DEL).

Some introductory remarks will come up on the screen with some exercises to
get the user familiar with the use of the p-System. A prompt at the top of the
screen advises the user to push Q to leave the tutorial mode and enter the
Command mode.

USING THE OPERATING SYSTEM

Command Mode

In contrast to MS-DOS, where you are simply shown A> on the screen, the
UCSD system provides you with a prompt as to what options are available to you.
This prompt will always appear across the top of the screen. You will be shown

Command: E(dit, R(un, F(ile, C(omp, L(ink, X(ecute, A(ssemb?

The operating system is telling you that in the command mode you can press E to
edit a file, R to run a program, F to look at your list of disk files, etc. If you are a
little hesitant to push the buttons, the users manual gives short, well-written
explanations ofwhat each button push will do.

If, for example, you push the E, the editor will look for a file with the special
name SYSTEM.WRK.TEXT. If the file does not exist, the system will, once more
by a series of prompts at the top of the screen, give you the option of creating the
work file, editing a file ofyour choosing, or, by pushing Q to quit, get you back out
ofedit mode and into the Command mode.

The Editor

If your only experience in editing program files has been with EDLIN, the
IBM program editor which comes standard with MS-DOS, you will be very
pleasantly surprised. This editor is much quicker and more versatile. It can
handle up to 700 lines of code, all ofwhich is kept in main memory. The net result
is that any command you choose to give is executed almost immediately. Often by
the time your finger is off the key, the command has been executed.

Once you have indicated to the editor that you wish to edit a program and
whether it is SYSTEM.WRK.TEXT or some other file name, your program will be
read in and you will be given a series ofprompts at the top of the screen:

Edit: A(djst C(py F(ind I(nsrt J(mp R(place Q(uit X(chng

Because your entire program is already in memory, these commands are
performed amazingly fast.

UNCLASSIFIED 130

DOCID: 3928859
THE UCSD P-SYSTEM UNCLASSIFIED

If you are writing a new program, you simply push I which will get you into
the I(nsrt mode and you can start typing. Ifyou already have a program and have
recalled it to make some changes, you use the cursor controls, the J(mp command,
or the F(ind command to locate the area in which you want to make your changes.

When you choose to edit your program, the first 20 lines are displayed on the
screen. If the area that you are interested in changing is on the screen, the easiest
thing to do is simply move the cursor to that area and then push the I(nsrt
command. Note that the text will immediately part for you, with a large blank
area suddenly appearing to the right of the cursor. You may then type in your
changes.

If the area needing to be changed is toward the end of the program, then from
the Edit mode you can push J(mp. A prompt will appear at the top of the screen
asking where you wish to jump to, beginning or end. If you push E, the last 20
lines ofyour program will appear on the screen as fast as you can take your finger
off the key. You can then push the cursor controls to move your cursor to exactly
the position that you wish to make changes and then push I. Once more you will
be in the insert mode.

Another option is the F(ind command. If you push the F from the edit mode,
you will be prompted for the string of characters that you wish to find. You can
type in a string and, once more, almost as fast as you have completed typing, you
will have a 20-line display with the character string in question at the center of
the screen.

There are many more options available to allow you to go immediately to any
area of interest in the program, and the enjoyable thing about this is that there is
not a lot to remember. The options are always displayed at the top of the screen.
If you have a question regarding an option, refer to the User's Manual which
explains the options very well.

Current theories ofgood programming require that you do a certain amount of
indenting. This editor supports that very well. When you do a carriage return,
the cursor will come to rest directly under the first character of the line above. If
the line above started in column 5, for example, the new line will also start in
column 5. If this is unacceptable, you can always use the right or left arrow to
adjust the cursor.

Suppose you have inserted a few lines of new text but have decided that all of
the lines should be moved to the right by, say, 'two spaces. All you have to do from
the E(dit mode is to move the cursor to the first line that should be adjusted to the
right. The cursor may be positioned anywhere on that line. Then push A(djst,
getting you into the adjust mode, and then the right arrow two times. The line
that the cursor was on will move over two spaces to the right. Then push the down
arrow. Every line that the cursor is positioned at will also immediately move two
spaces to the right. When you are through adjusting, you push Q(uit, which will
get you back to the E(dit mode.

When you are through editing, you simply push Q to quit the editor. You
will immediately be given the option of (1) saving your file as SYSTEM.WRK.
TEXT or some other name that you may give the file, (2) returning to edit mode
(you might have pushed Q by mistake), or (3) exiting without saving anything
(you might be really disgusted with your program).

131 UNCLASSIFIED

DOCID: 39~~~i1FIED

The Pascal Compiler

CRYPTOLOGIC QUARTERLY

Mter leaving the editor, you will be back in the Command mode, once more
with the prompt at the top of the screen advising of possible options. If you have
just written a program, the next option might be to push C to compile. Your
compiler will be read in, and it will go out looking for your SYSTEM.WRK.TEXT
file to compile. If you choose to save it under some other name, the compiler will
ask what file you want compiled. Once you type in the name, compilation begins.
The screen will continually advise you as to what procedure, function, or segment
is being compiled as well as what line it is on. If (alas) there is an error, the
compiler will stop and tell you of the error and the options available. Typically
your options would be either to continue compilation or to make the change. If
you wish to make the change, simply push E which returns you to the edit mode
with the cursor at the position where the compiler found the error. Simply correct
the error, push Q to get out ofedit mode, and initiate compilation once more. Very·
simple.

The compiler is amazingly accurate at finding errors. It is usually able to
point to the exact location and is rarely more than a word off.

Mter the program has successfully compiled, simply push R to start it
running. Once more, the prompts on the screen are quite clear.

Other options are possible from the command mode. Pushing F for files will
give a number of options that can be done from the filer. You can, for example,
rearrange the files, add or delete them - the usual things that one would expect to
be able to do on a personal computer. The unusual thing is the small number of
keystrokes required to perform these operations.

The Pascal Language

The authors of the UCSD system have done a very good job of taking an
excellent programming language and making it even better. The creator of the
Pascal language, Dr. Nicholas Worth, wrote a language to teach students good
programming techniques. He was not very interested in I/O techniques and, for
the purposes ofhis language, assumed that al~ input would be via card reader and
all output would be to a tape. Therefore, sequential I/O was all that was needed.
Unfortunately(?) the IBM-PC has no idea what a card reader or tape drive is. The
UCSD modification allows for random access of files, addressing the screen, string
operations almost as easy as those in BASIC, and many other modifications
needed to make Pascal into a useful language for a microcomputer.

Observations

The authors designed this system to be friendly to the programmer, and it
would seem that they have succeeded admirably. Moving around through the
operating system and the various utilities is indeed fast, and very rarely is the
user unsure ofwhat his next move should be.

The documentation in all five manuals is excellent. The Beginner's Guide
serves as an orientation guide for people first learning to use the system and as a
r.eference manual for these same people once they are familiar with the ~y$tem.

UNCLASSIFieD 132

DOCID: 3928859 THE UCSD P-SYSTEM UNCLASSIFIED

There is also a Reference Manual, which can be used by someone who knows
Pascal and is interested in learning the differences in the p-System version. The
User's Guide provides a very good description of how to use the operating system.
The Internal Architecture Guide describes the internal design of the UCSD p
System: the P-machine, Operating System, basic I/O and the way in which these
elements are organized to support the running of a program written in UCSD
Pascal. The Assembler Reference Manual describes the UCSD 8086/88
Assembler.

There were some bad points, however. If, in the course of a programming
session you do continual edits and recompilations, your disk space will become
very fragmented. You may have enough room for your program but not in
contiguous locations. The operating system does not allow for fragmented
programs in the manner that MS-DOS does. Your program must be in contiguous
locations, or you will not be able to get out of the edit mode without abandoning
your program. You can get around this by inserting a formatted disk into your B
disk drive and writing the program to that disk and then going back and
rearranging your fragmented disk. This, to say the least, is rather inconvenient.

There is not a great deal of software support for this system. If, for example,
you need a communications package that will go on a p-System diskette, your
choices will be limited.

The programs run slow. Although no serious attempts at benchmarking were
done, a large program was written using p-System Pascal. This program had a
sorting routine in which a very large amount ofdata had to be manipulated. This
particular routine took 45 minutes. The programmers and potential users found
this to be unacceptable. The program was then rewritten under MS-DOS using
Microsoft Pascal. This same routine then took 5 minutes. This certainly is not a
definitive speed test, but there is some indication that speed of execution should
be a consideration ifone is thinking about using the p-System.

CONCLUSIONS

All in all, the price is steep ($700.00), but you do get an operating system, a
very good program editor, and a Pascal compiler. The operating system is not as
sophisticated as MS-DOS causing the user to quit his editing every so often to
rearrange the disk.

This version of Pascal was, as mentioned, modified so that interactive
programs can be written. The potential user should balance that with the fact
that when the programs are written they will run as much as 10 times slower
than a standard compiled Pascal, and that in the process of developing large
programs, you will constantly be switching disks.

For my particular application, I chose to stick with Microsoft Pascal and the
Vedit program editor.

133 UNCLASSIFIED

DOCID: 3928859

FGR GFFlCIAL liSE ONLY

CRYPTOLOGIC QUARTERLY

134

\\

